Integral transform approach to solving Klein-Gordon equation with variable coefficients

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

B-SPLINE COLLOCATION APPROACH FOR SOLUTION OF KLEIN-GORDON EQUATION

We develope a numerical method based on B-spline collocation method to solve linear Klein-Gordon equation. The proposed scheme is unconditionally stable. The results of numerical experiments have been compared with the exact solution to show the efficiency of the method computationally. Easy and economical implementation is the strength of this approach.  

متن کامل

SOLVING NONLINEAR KLEIN-GORDON EQUATION WITH A QUADRATIC NONLINEAR TERM USING HOMOTOPY ANALYSIS METHOD

In this paper, nonlinear Klein-Gordon equation with quadratic term is solved by means of an analytic technique, namely the Homotopy analysis method (HAM).Comparisons are made between the Adomian decomposition method (ADM), the exact solution and homotopy analysis method. The results reveal that the proposed method is very effective and simple.

متن کامل

Nonlinear Klein-Gordon Equation

An extended ( ′ G )–expansion method is obtained by improving the form of solution in ( G′ G )– expansion method which is proposed in recent years. By using the extended ( ′ G )–expansion method and with the aid of homogeneous balance principle, many explicit and exact travelling wave solutions with two arbitrary parameters to the Klein-Gordon equation are presented, including the hyperbolic so...

متن کامل

Differential transform method for solving the linear and nonlinear Klein-Gordon equation

Article history: Received 27 June 2008 Received in revised form 9 November 2008 Accepted 17 November 2008 Available online 19 November 2008 PACS: 02.30.Jr 02.60.Cb 02.60.Lj

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematische Nachrichten

سال: 2015

ISSN: 0025-584X

DOI: 10.1002/mana.201400282